UNIT-1I1
FUNCTIONS AND POINTERS
FUNCTIONS

A function is itself a block of code which can solve simple or complex task/calculations.
A function performs calculations on the data provided to it is called “parameter” or "argument”,

A function always returns single value result,

Types of function:
1. Built in functions{Library functions)
i) Inputting Functions.

b} Outputting [unctions.

2 TTser dehned Mlunctions.
a.) [act():

b.) sum);

Parts of a function:
|. Function declaration/Prototype/S yntax,
2. Function Calling.

3. Functicn Definition.
1.)Function Declaration:
Syntax: <return type > <function name:={<type of arpument:)

The declaration of function name, s argument and returm type 15 called function declaration.

2.) Functon Calling:

The process of calling a function for processing is called function calling.

Syntax: <var_name>=<function_name:>(<list of arguments=).

3. Functiom delination:

Scanned with CamScanner

The process of writing a oode (or performming any specific task is called [unction defination.
Syntax:

<return typez-<lunction name>{<type of arguments:)

{

<statement-1=

<statement-2=

returni<vlares=)

}

Example: program based upon function:

WAD to compute cube of a no. using function.
#include<stdio e~
#include<conio h:

void main()

{

int ¢,m;

int cube{int);

printf{"Enter a no.");
scanf("% d",&n);

c=cuhe(nd;

prnifi“cube of & no. 15=%d" c);
}

int cube(int n)

{

c=n*n*n;

returnie);

}

WAP to compute factorial of a no. using function:
Hinclude<stdio he-
#include<conio.h>

voied main()

Scanned with CamScanner

{

int ni=1;

int faci{ini]

prntf("Enter a no.™);

scanf{ "% d".&n};

f=fact(n};

printf{"The factorial of a no. is;=%d".f);

}

int fact(int n)

int f=1;

i

for(int i—n;i=—nji--)
i

f=r*i;

}

refurn(f;

t

Recursion

Firstly, what is nested function?

When o functiom invokes another function then it s colled nested function.

But,

When a function invokes itself then it is called recursion.

MOTE: In recursion, we must include a terminating condition so that it won't execute to infinite

time.

Example: program based upon recursion:

WAL to compute factonal of a no. using Recursion:
finclude<stdio he-
#incluode<conio.h>

voied main()

Scanned with CamScanner

{

int n,l;

int faci{ini]

prntf("Enter a no.™);

scanf{ "% d",&n};

f=fact(n};

printf{"The factorial of a no. is;=%d".f);
}

int fact(int n)

int f=1;

i

ifin—(1)

return(fy;

else

returnin*lact(n- 1));

I

Passing parameters (o a function:
Firstly, what are parameters?

paramelers are the values that are passed to a function for processing.

There are 2 types of parameters:

a.) Actual Parameters.

b.) Formal Parameters.

a.) Actual Parameters:
These are the parameters which are used in main{) function for function calling.
Syntax: <vanable name>=<function name><actual argument>

Example: f=fact{n);

b.) Formal Parameters.

These are the parameters which ane used in function defination for pricessing.

a3

Scanned with CamScanner

Methewds of parameters passing:
1.3 Call hy relerence.
2) Call by value.

1.3 Call by reference:

In this method of parameter passing , original values of variables are passed from calling

program (o function,

Thus,

Any change made in the function can be reflected back to the calling program.

2.3 Call by value.

In this method of parameter passing, duplicate values of parameters are passed from calling

program o function delination.

Thus,

Any change made in function would not be reflected back to the calling program.

Example: Program based upon call by value:

include<stdin h=

include<conin bz

vond main()

!

int a.b;

a=10;

b=20;

void swap{int,int}

printf{"The value of a before swapping=%d",a);

printfi"The value of b before swapping="d", b);

void swap{a,b):

printf{"The value of a after swapping—%d",a);
printf("The value of b aflter swapping=%d",h);

Scanned with CamScanner

}

viid swanp{int x, int y)

STORAGE CLASSES

Every Yariable in a program has memory associated with it.

Memorv Requirement of Variables is different for different types of variables.

In C, Memory is allocated & released at different places

Term

Definition

Scope

Region or Part of Program in which Variable is accessible

Extent

Pericd of time during which memory is associated with vanable

Storage
Class

Manner in which memory is allocated by the Compiler for Variable

Different Storage Classes

Storape dass of variahle Determines following things

Where the vanuahle is stored

Scope of Variable

Drafault imtial valoe

Lifetimne of vanable

A, Wheere the variable & stored:

Storage Class determines the location of vanasble, where it 15 declared. Vanables declared with

auto storage classes are declared inside main memory whereas variables declared with keyword

register are stored inside the CI"U Register.

Scanned with CamScanner

B. Scope of Variable

Scope of Variohle tells compile about the visthility of Varable in the block. Venahle may have
Block Scope, Tocal Scope and External Scope. A scope is the context within a compuler
program in which a vanable name or other identifier is valid and can be wsed, or within which a
declaration has effect.

. Defauh Initial Value of the Variahle

Whenever we declare a Variable in C, garhage value is assigned to the variable. Garbage Value
may be considered as initial value of the vanable, C Programming have different storage
clazses which has different initial values such as Global Variable have Initial Value as 0 while

the Local auto variable have default initial garbage value.

I Lifefime of variable
Lifetime of the - Time Of variable Declaration - Time of Variable Destruction
Suppose we have declared vanable inside main function then varable will be destroyed only

when the control comes out of the man a.e end of the program.

Different Storage Classes:

Auto Storage Class

Static Storage Class

Extem Storaere Class

Repster Storaee Class

Automatic {Aulo) storage class

This is defanlt storapge class

All variables declared are of type Auto by default

In order to Explicit declaration of vanable use “anto’ keyword
auto int num] ; // Explicit Declaration

Features:

Storage Memory

Scope Local / Block Scope

Scanned with CamScanner

Lile time Exists as long as Control remains in the

hlack

Delault initial Garbage
Value

Example

void main()

auley murm = 240 ;

{

aulo riemm = ack ;
printfi"nNum : %d",numj};

I
printf(*nMNum : %d",num];

}

Output :
Mum : 60
Mum ; 20

Mote =

Two variables are declared in different blocks , so they are treated as different variables

External (extern) storage class in C Programming

Variables ol this storage class are “(ilobal variahles™

Gilobal Vanahbles are declared outside the function and are accessible to all lunctions in the
program

Generally , External vanables are declared again in the function using keyword extern

In order to Explicit declaration of variable use “extern” keyword

exterm int num | ; / Explicit Declaration

Fealures :

Scanned with CamScanner

Storage Memaory

Seape Global / File Scope

Life time Exists as long as variable is running

Retains value within the function

Default initial Value Fero

Example

int num = 75 ;
void display();

void main()

extemn int num ;

printf{“nMNum : %d",num};
dizplay(};
1

void display()
{

extern int nom ;
printf{"nNum : %d",num};
I

Output :
Mum - 75

Mum =75

Maote @

Declaration within the function indicates that the function uses external variable

Functions belonging to same source code , does not require declaration (no need to write extern)

If variable is defined outside the source code | then declaration asing extern keyword 15 required

Scanned with CamScanner

The static storage class instructs the compiler (o keep a local vanable in existence during the
life-tinre of the program instead of creating and destroying 1 each tirne 18 comes into and goes
out of scope. Therelomne, making local varahles static allows them (o maintain their values
belween [unction calls.

The static modifier may also be applied to global varables. When this is done, it causes that
variable's scope to be restricted to the file in which it is declared.

In C programming, when static is used on a class data member, it causes only one copy of that
member to be shared by all the ohjects of its class.

finclhude <stdio he

S function declaration */
void funcivoid);

static int count — 5; /* global variable */
maini) |

while(couni—} [
Tumnc();

!

return {J;

}

HE function defnition =/
vooled Funcl vond) |

static int i — 5; /* local static variable */
i+

printf("i is % d and connt is %d\n”, i, count);

}

When the above code 15 compiled and executed, it produces the following result —
i i5 6 and coxnt is 4

iis 7 and count is 3

i is 8 and count is 2

i is 9 and count is 1

i is 10 and count is 0

Scanned with CamScanner

Register Storape Class
register keywond 15 used to define Tocal vanable.

Local vartable are stored in register instead of RAM.

As variable 1% stored in regisier, the Maximom size of variable = Maximum Size of Register

unary operator | &) is not associated with it because Yalue is not stored in RAM instead it is

stored in Kegister.
This is generally used for faster access,
Common use 15 “Counter™

Syntax
{

register int count;

}

Register storage classes example
#include<stdio.h>

inl mainy)
|

int numl,num32;
register int sum;

printf(“\nEnter the Number 1 ; *);
scanfy "% d" &numl);

printi("'nEnter the Number 2 ; *);
scanfy "% d" Snum2);

sum = mum |l + num?2;

printfi"\nSum of Numbers : %d", sum);

return({});
l

Explanation of program

Refer below animation which depicts the register storage classes —

Scanned with CamScanner

return H;

In the above program we have declared two variables numl.num2. These two variables are
stored in BAM.

Another vanable 15 declared which 1s stored inoregister variable Register vanahles are stored in
the register of the microprocessor. Thus memory access will be faster than other variohles.

Il we try 1o declare more regisier varables then it can reat vanables asAuto storage vanahles as
memoary of microprocessor 15 lixed and limited.

Why we need Repister Variahle ?

Whenever we declare any variable inside C Program then memory will be randomly allocated at
particular memary location,

W huve to keep track of that memory location. We need to access value at that memory location
wsing ampersand operator/ Address Operator 1.e (&),

Il we store same variable in the regisier memory then we can secess that memory Tocation

directly without using the Address operator.

Register variable will be accessed faster than the normal variable thus increasing the operation
and program execution. Generally we use register variable as Counter.

Mote z It is not applicable for armays, structures or pointers.

Summuary of register Storage chas

Keyword register

Storage Location CPU Register

Scanned with CamScanner

Keyword register

Initial ¥alue Garbage

Life Local to the block in which variable is declared.

Scope Local to the block.

Preprocessor directives

Before o C program is compiled in a compiler, source eode 15 processed by a program called
preprocessor, This process is called preprocessing.

Commands used in preprocessor are called preprocessor directives and they begin with “4™

symbuol.

Below is the list of preprocessor directives that C laxguape offers.

S.no Preprocessor Syntax Description

This macro dafines
constant valoe and
can be any of the

Macro #dehine hasic data types.

The source code of
the file “file_name”
15 included in the

Header file #include main program at the

inclusion <file_namez specified place

Sel of commands are

incloded or excluded

#ifdef, #endif, in source program

Conditional #al, before compilation

compilation #else, #ifndel with respect (o the

Scanned with CamScanner

concition

Oither

directives #undel, #fpragma

#undef is used to
undefine a defined
macro variahle.
#iPragma is used o
call a function before
and after main

fumction in a C

program

A program in C language involves into different processes. Below diagram will help youo to

untlerstarud all the processes that a C progrom comes across.

EXAMPLE PROGRAM FOR #DEFINE, #INCLUDE PREPROCESSORS IN C:

#define — This macro defines constant value and can be any of the basic data types.

#include <file_name= — The source code of the file “file_name™ 15 included in the main C
program where “#finclude <file_name=" 15 mentioned.

finclude <stdio h>

#idefine height 1060

#define number 314

Fdehne letber 'A'

#define leter_seguence "ABC"

Fdehne hackslash_char 7"

voud main()
i
printf("value of height : %d \n", height);
printf("value of number : %f \n", number);
printf("value of letter : %c \n®, letter);
printfi"*value of letter_sequence : %5 \n", letter_sequence);
printf("“value of backslash_char : %c \n", backslash_char);

I
OUTPUT:

Scanned with CamScanner

vulue ol height : 100

value ol number @ 3. 140000
vilue of letter @ A

value of letter_sequence : ARC

value of hackslash_char : 7

EXAMPLE PROGREAM FOR CONDITIONAL COMPILATION DIRECTIVES:
Al EXAMPLE PROGRAM FOR #IFDEF, #ELSE AND #ENDIF TN C:
“Hildel” directive checks whether particular macro 18 defined or not, IF it 15 defined, “TF° clause

statements are included in source file.

Otherwise, “else” clause statements are included in source file for compilation and execution.

#include <sidio h=
Hedelfine RATUT 10

int main)
|
Kifdel RAJU
printf("RAJU is defined. So, this line will be added in ™,
“this C file\n");
Helse
printf("RAILT is not definedin™);
Hendif
redurn {0;

}
OUITPLUT:

EATT 15 delined. Se, this Tine will be added in this C Qle

By EXAMPLE PROGRAM FOR #IFNDEF AND #ENDIF IN C;
#ifndef exactly acts as reverse as #ifdef directive. If particular macro is not defined, “IF” clause
statements are included n source file.,

Ohherwise, else clause stalements are included in source file for compilation and execation,

#include <stdio s
#define RAJU 100

Scanned with CamScanner

int mainl)

!
Hifndel SELVA

{
printf{"SELV A is not defined. So, now we are going to "y,
“define here\n");
#define SELVA 300
I
felse
printf("SELV A 15 already defined in the program™);

fendif
return O

}
OUTPUT:

SELWA is not defined. So, now we are going to define here

) EXAMPLE PROGRAM FOR #1F, #ELSE AND #ENDITF IN C:

"I elause statement is included in source file if given condition 15 true,

Otherwise, else clause statement is included in source file for compilation and execution.

#include =sidio h=
Hdeline a 100
ini mainl)
{
Hil (a==100))
printf(*This line will be added in this C Ale sinee "
“a = 100\n");
#else
printfi*'I'his line will be added in this C file since "\,
“a is not equal to 100\n"~);
H#endif
return 0;

OuUTPUT:

This line will be added in this C file since a = 100

Scanned with CamScanner

EXAMPLE PROGRAM FOR UNDEF TN C:
This directive undefines existing macrn in e program.

dinclode =stdio b

#define height 100

void main()

i
printfi("First defined value for height : %d\n" height);
#undef height A undefining variable
#define height 600 /¥ redefining the same for new value
printf("value of height after undef \& redefine:%d" height);

I
ouUTrUT:

First detined valoe for height : 100
value of height after undef & redefine : GO0

EXAMPLE PROGEAM FOR PEAGMA IN C:

Pragma 15 used 1o call a function before and after matn function in a C program.

Hinclude <stdio b

void funcrionl(¥;
void function2(¥

#pragma startup function |
#pragma exit function2

inl maing

i
printf { "\n Now we are in main function”) ;
return 1;

}

void functiond()

printf{"'nFunction] 15 called before main function call");

}

void function2(}

printf { "\nFounction2 is called just before end of ",
"main fuxction”) ;"

Scanned with CamScanner

OUTPUT,

Function] s called belome main funclion call

Mow we are in main function

Function? is called just before end of main function

MORE ON PRAGMA DIRECTIVE IN C:

S.no

Prapma command

description

fil'ragma startup

<lunciion_name_|=

This directive executes function

named “function_name_ 17 belore

#'ragma exit

<funclion_name 2=

This directive executes function

named “function_name 2" just

before termination of the program.

fipragma warm — rvl

If function doesn’t return a value,
then warnings are suppressed by

this directive while compiling.

IT function doesn’™ use passed
function parameler , then wamings

are suppressed

#ipragma wamm — rch

If & nom reachable code 15 wrillen
inside o program, such warnings

are suppressed by this directive,

Scanned with CamScanner

FOINTERS

Poinier Orverview

Variable Name =»

Value of Variable = 65524 65522

Address of Location = 65524 65522 65520

Consider above Diagram which clearly shows pointer concept in ¢ programming —

iis the name given for particular memory location of crdinary variable.

Let us consider it’s Comresponding address be 65624 and the Value stored in vanable *i* is 5
The address of the variable “i* is stored in another integer variable whose name is *j* and which

is having cormesponding address 65522

thus we can say that -

] = &i;

Le
1= Address of i
Here j is not ondinary variable , It is special variahle and called pointer variable as it stores the

address of the another ondinary variable. We can summarize i like -

Variable Name Variable Value Varable Address

63524

] 5524 05522

B. C Pointer Basic Example:

#include <sidio.h=

int maini)

{
int *ptr, i
1=11;

/* address of i is assigned to ptr =/

Scanned with CamScanner

pir = &1;

/* show 1's value using ptr vanable */

printl(* Value of 1 - %d", *ptr);

return O

I

See Ourput and Download =

You will get value of i = 11 in the above program.,

C. Pointer Declaration Tips :

1. Pointer is declared with preceding * :

int *ptr; /Here pir is Integer Pointer Variable

int ptr; //Here ptr is Normal Integer Variable

2. Whitespace while Writing Pointer :

pointer variable name and asterisk can contain whitespace because whitespace is ignored by
campiler.

int *pir;

int * pir;

int * pir;

All the above syntax are legal and valid. We can insert any number of spaces or blanks inside
declaration, We can also split the declaration on multiple lines,

3. Key points for Pointer

Unline prdinary vanables pointer is special type of vanshle which stores the address of ordinary
varahle.

'ointer can only store the whole or integer number because address of any type of variable is
considered as integer.

It is pood to initialize the pointer immediately after declaration

& symbol iz used to get address of varable

* symbal 15 used to get value from the address given by pointer.

E. Pointer Summary :

Pointer is Special Variable used to Reference and de-reference memaory. (*Will be covered in

upcoming chapter)

Scanned with CamScanner

When we declare integer pointer then we can only store address of integer vanahle into that
printer.
Similarly 1l we declare character pointer then only the address of character vanahble s stomead into

the pointer variahle.

Pointer storing the address of following DT Pointer is called as

[nteger Integer Pointer

Character Character Pointer

Mouhle Drwuhle Pointer

Flouat Flisat Poanter

Pointer is a variable which stores the address of another variable

Since Pointer is also a kind of variable , thus pointer itself will be stored at different memory
location.

2 Types of Variables :

Simple Variable that stores a value such as integer,float, character

Complex Variable that stores address of simple variable i_e pointer variables

Simple Pointer Example #1 :

Hinclude<stdin e

inl mzinl)

{
inl a=3;
int *#ptr;

pir = &a;

returni};

}

Explanation of Example

Point Variable 'a’ Variable 'pir’

Mame of Variable pir

Scanned with CamScanner

Point Varahle ' Vanahle pir’

Type of ¥alue that it holds Integer Address of Integer "a’

Value Stored 1 2001

Address of Varnable 2001 {Assumplion) 4001 (Assumplion)

Simple Pointer Example #2 :

Himclode<stdin b=

ini maing)

i

int a = 3;

inl *pir, ¥*pptr;
pir = &u;

ppiT — &pir;
return(idy;

!

Explanation of Example

With reference to above program —

ptr

We have following associated points —

Point Variable 'a’' Vanahle 'pir’ Variable "pptr’

Name of Yanable pir pplr

Type of Yalue that it holds Integer Address of a' Address of 'pir’

Value Stored L 40001

Scanned with CamScanner

Poini

WVarahle o'

Vanahle 'pir’

Varizble ‘ppir’

Address of Variable

2001

4041

G001

Pointer address operator in C Programming

Pointer address operator is denoted by "&" symbal

When we use ampersand symbeol as a prefix to a variable name ‘&’ it gives the address of that

variable.

lets take an example —

&n - N gives an address on vanehle n

Working of address operator

#include<stdio h
void main()

i
int n = 11;
printfi"\nValue of n is ; %d".n);

printf{"\nValue of &n is ; %u”, &n);

}
Output :

Walue of ns: 10
Walue of &mn is : 1002

Consider the above example, where we have used to print the address of the variable using

ampersand operator.

In orler (o print the vanable we simply use name of vanasble while to pant the address of the

varinble we use ampersand along with %u

printi("\nValue of &n 15 : %" &n);

Understanding address operalor

Constder the following program -

#inclhode<stdin =
ini maing)

d
int 1 = 5;
inl *pir;

Scanned with CamScanner

pir = &i;

printl("nAdiress of 1 : %u", &1);
printf("\nVulue of pir is : %u® pir);

returnil);

]

After declaration memory map will be like this —
int i = 5;

int *pir;

ptr

Garbage value
5 B30 (M i cide variable pfr

65524 65522

after Assigning the address of vanable (o pointer |, e after the execution of this stalement -

pir = &i;

[pluy

~ Address of Variable
5 03524 |Wpmm— octs stored in pir

65524 65522

Tnvalic TIse of pomter address operator

Address of literals

In C programming using address operator over literal will throw an error. We cannot use address
operator on the literal to get the address of the literal,

&75

Only variables have an address associated with them, constant entity does not have
corresponding address. Similarly we cannot use address operator over character literal -

de(a’)

Character *a" 1s liferal, so we cannot use address operator.

Address of expressions

Scanned with CamScanner

(a+h) will evaluate addition of values present in vanables and output of (a+h)is nothing bt

Literal, so we cannot use Address operator

&(a+h)

Memory Organization for Pointer Variable:

When we use variable in program then Compiler keeps some memory for that variable
depending on the data type

The address given to the variable is Unique with that variable name

When Program execution staris the variable name is automatically translated into the

corresponding address.

f > Location Name

3 - = Value at Location

a5524 = Location Number

Explanation :

Pointer Varahle is nothing but a memaory address which holds another address .

[9=

In the above program “i” is name given for memory location for human understanding |, but

compiler 15 unable (o recognire “17 |, Compiler knows only address.

In the next chapter we will be learnizg |, Memory reguinement (or storing pointer variahle.

Syntax for Pointer Declaration in C :

data_type *<pointer_name:z;

Explanation :

data_type

Type of variable that the pointer points to

OR data type whose address is stored in pointer name
Asterisk(™)

Asterisk 15 called as Indirection Operator

It 15 also called as Value at address Operator

It Inchicates Variable declared is of Poinler tvpe

104

Scanned with CamScanner

pointer_name

Must be any Valid C identilier

Must follow all Rules of Vanable name declaration
Ways of Declaning Pointer Vanable:

|box| * can appears anywhere between Pointer_name and Data 1'ype
int *p:

int * p:

int * p;

Example of Declaring Integer Pointer:

int n = 240;

int *ptr;

Example of Declaring Character I'ointer:

char ch — 'A%

char *cpir;

Example of Declanng Float Poimnter:

Moat fvar = 3.14;

foat *fpir;

How to Initialize Pointer in C Programming?

pointer = &variable;

Above 15 the syntax for imtializing pointer variahle in C.

Initialization of Pointer can be done using following 4 Steps -

Declare a Pointer Variable and Note down the Data Type.

Declare another Variable with Same Data 'I'ype as that of Pointer Variable.
Initialize Ordinary Variable and assign some value to it.

MNow Initialize pointer by assigning the address of ordinary variable to pointer vanable,

below example will clearly explain the initialization of Pointer Variable.

#include<sidio b
int main()

inta; A Step |
inl *pir; [/ Slep 2

Scanned with CamScanner

a=10; /Step3
pir = &y N Step 4

refurn({;

!
Explunation of Above Program :

Pointer should not be nsed before initialization.

“ptr" 15 pointer variable used to store the address of the vaniable.
Stores address of the variable *a’ .

Mow “ptr” will contain the address of the variable “a®™

Mote

|box]Pointers are always initizlized before using it in the program|/box |

Example : Initializing Integer Pointer

#include<stdio.h>
ini maing)

{

int a= 10

int *ptr;

pir = &a;
printf("\nV alue of pir ; %o®,pir);

return(;

l
Output :

Value of ptr; 4001

Pointer arithematic

Incrementing Pointer:

Incrementing Pointer is generally used in amay because we have contiguous memory in array and

we know the contents of next memory location.

Incrementing Pointer Variable Depends Upon data type of the Pointer variable

Formula : { After incrementing)
new value — current address + i ® size_of{data type]

Three Rules should be used to increment pointer —

Scanned with CamScanner

Address + 1 = Address

Address4++ = Address

++Address = Address
Pictorial Representation :

: i After

pir
(Gooo) ———> (1002)

1600 MEE Incrementing A58

Varlable cdleam.co.cc

Diata Older Address stored in | Mext Address stored in pointer after

Type pointer incrementing {ptr++)

int 1000 1002

Moat 100 10044

char 1aon 1001

Explanation : Incremeting Pointer

Incrementing a pointer o an integer data will cause its valoe o be incremented by 2

Thiy differs from compiler to compiler as memory required (o store integer vary compiler Lo
compiler

|box | Wote to Remember : Increment and Decrement Operations on pointer should be used
when we have Continues memory (in Array).|/box]

Live Example | : Increment Integer Pointer

fiinclude<sidio b
int main)|
int *ptr=(1int *)1000;

pir=pir+1;
printf("New Value of ptr : $au”,pir);

Scanned with CamScanner

reiurm 1)

I

Output :

New Value of ptr: 1002

Live Example 2 : Increment Double Pointer

#include<sidio.h:

int maing}{

double *ptr=(double *)1000;

pir—pir+1;
printf("MNew Value of pir : %u”,pir);

return 1;

1
Output :

New Value of ptr: 1004
Live Example 3 : Amay of Pointer

#include<sidio.hs
int main()|

float var[5]={ [.1£,2.21,3.3f};
Moat(*pit)[5];

pir—d&var;
printfi" Value inside pir : %u”,pir);

ptr—pir+1;
printfi" Value inside pir : %u",ptr};

redurn 0

I
Cutput :

Value inside pir : 1000
Value mside ptr @ 1020

Scanned with CamScanner

float *"pbtxr[S5]

ptxIl]
pEtr[2]
pEtxr[3]
ptx[4]

Explanation :
Address of ptr[0] = 1000

ptxr [EI] —

Float var[5]

We are storing Address of float array to ptr[0]. -

Address of pte[1]

= Address of ptr[0] + (Stee of Data Type)*{(Siee of Armay)

= 1000 + (4 hytes) * (5)
- 1020

Address of Yar|0)...Var|4] :

Address of var{0] = 1000
Address of var|1] = 1004
Address of var{2] = 1008
Address of var{3] = 1012
Address of var]d] — 1016

Formula : { After decrementing)

nevw_address — (current address) - i * size of{data tvpe)

|box| Decrementation of Pointer Variable Depends Upon : data type of the Pointer variable|/box |

Example :

ptr

After

ptr

(20) (1000) ———= (0998

1000

M58 decrementing A58

Yarlable

cdleam.co.cc

Scanned with CamScanner

Data Older Address stored in MNext Address stored in pointer alter

Type munter incrementing (pir—)

int 10K 0998

float 10D 0994

char 10050 0999

Explanation:

Decrementing a pointer (o an integer data will cause its value to be decremented by 2

This differs from compiler to compiler as memory required o store integer vary compiler Lo
compiler

Pointer Program: Dilference between two mteger Poinlers

#include<stidio.h>
int maing}|

float *pirl=(float *) 1000;
float *pu2=(Tloat *)2000;

printfi"nDifference : %d",ptr2-ptrl);

return O;

I
Output :

Difference : 250
Explanation :
Ptrl and Pir2 are two poinlers which holds memory address of Float Vanahle.
Pir2-Pirl will gives us number of foating point numbers that can be stored.
ptr2 - ptrl = (2000 - 1000) / sizeof{float)

= 1000 / 4

= 250
Live Example 2:

#include<stdio.h>

struct vary

Scanned with CamScanner

char cvar;
int tvar;
Mt Tear;

}s
int maing)|
struct var *ptrl,*ptr2;

prl = {struct var *1000;
pir2 = (struct var *J2000;

printf({"Difference= % d”,pir2-ptrl);

return O:

!
Output :

Difference — 142
Explanation -
ptr2-ptrl = (2000 - 1000 Sizeof{struct var)
= 1000 7 (14+2+4)
= 1000 /7
= 142
Adding integer value with Pointer
In C Programming we can add any integer number (o Pointer variable. Tt is perfectly legal inc
programming to add integer to pointer vanable.
In order to compute the [inal value we need to ose following fomuolae
final value — (address) + (number * size of data type)
Consider the following example —
int *pir , n;
pir = &mn ;
pir = pir + 3;
Live Example 1 : Incremext Integer Fointer

fFinclude<stdio. o>
ink main)

inl Fpur=(int *)1000;

Scanned with CamScanner

pir=pit+3;
printl("New Value of pir : $a”,pir);

return {;

}
Output :

New Value of ptr: 1006
Explanation of Program :

[n the ahove program —

int *ptr=(int *})1000;

this line will store 1000 in the pointer variable considering 1000 is memory location for any of

the integer variable.
Formuala :
pir — ptr + 3 * (sizeof{integer))
1000 =3 *(2)
1000 + 6
1006
Sumularly if we have written above statement like this =
float *ptr={float *) 1000;
then result may he
pir=pir + 3 * {sizeol{Moat))
= 1000 + 3 *(4)
- 1000 + 12
- 1012

Suppose we have subtracted “n™ from pointer of any data type having initial addess as

“imit_address” then after subtraction we can write —
pir = initial_address - n * (sizeofi{data_type))
Subtracting integer value with Pointer

int *pir , n;

pir = &mn ;

ptr — ptr - 3;

Scanned with CamScanner

Live BExample | : Decrement Integer Pointer

thnclodestedin e

int main)|

int *prr={int *31000;

pir=pir-3;
printf{"MNew Value of ptr : %u”,pir):

return 0
!
Chutput :
New Value of pir: 994
Formula :
pir =ptr - 3 * (sizeof(integer))
= 1000 -3 *(2)
= 1000 -6
= 90
Summary :
Pointer - Pointer = Integer

Pointer - Integer — Pointer

Differencing Pointer in C Programming Language :
Differencing Means Subtracting two Pointers.

Subtraction gives the Total number of objects between them .

Subtraction indicates “How apart the two Pointers are 77

C Program to Compute Difference Between Pointers :

finclude<stdio he

int main)

{

Scanned with CamScanner

int num , *pirl *pir ;

pirl = &num ;
pirz = pirl + 2 ;

printf(" %d" ptr2 - ptrl})

returni);

!
Chutput ;
2

pirl stores the address of Variahle num
Value of ptr2 is incremented by 4 bytes
Differencing two Pointers

Important Observations :

Suppose the Address of Variable nom — 1000,

Statement Value of Pirl

Value of P2

int num , *pirl *pir2 ; Crarhape

pirl = &num ; | CHOCH

Garbage

Carbage

pir2 =ptrl +2 ; (W

ptr2 - pirl 1 (HK}

1 004

1004

Computation of Pir2Z - Pirl :

Femember the following formula while computing the difference between two pomniers —

Final Result = (ptr2 - pirl)/ Siee of Data Type

Step 1 : Compute Mathematical Difference (Numercal DilTerence)

ptr2 - pir]l = Value of Pir2 - Value of Pirl
= 1004 - 1005
=4

Step 2 : Finding Actual Difference (Technical Difference)

Final Result = 4 / Sire of Integer
=4/2
=

Scanned with CamScanner

MNumencally Subtraction { ptr2-ptrl) differs by 4

As hoth are Tntegers they are sumerically Differed by 4 and Technically by 2 ohjects

Suppose Both pointers of [oat the they will be differed numencally by 8 and Technicolly by 2
ohjects

Consider the below statement and refer the following table —

int num = pir? - ptrl;

and

If Two Pointers are of Following Data | Numerical Technical

Type Difference Difference

Integer

Flouat

Character

Comparizon between two Pointers :
Paointer comparison is Valid only if the two pointers are Pointing (o same array

All Relational Operators can be used for comparing pointers of same type

All Equality and Inequality Operators can be used with all Pointer types
PPointers cannot be Divided or Multiplied

I"oint 1 : I'cinter Comparison
Hnclode<stdin h=
int main)

|
int *pirl,*ptra;

pirl = {int *) 1000,
pir2 = {int *)2000;

if{pir2 = pirl)
printf{"Pir2 is far from pirl™);

return(d);

}

Scanned with CamScanner

Pointer Comparson of Different Data Types :

Ihnclodestedin b=

int main()

i
int *pirl;
float *pur2;

pirl = {int *) 1000,
pir2 = (float *)2000;

if{ptr2 = ptrl}
printf("Ptr2 is far from pirl™);

return(};

}

Explanation :

Two Pointers of different data types can be compared .

In the shove program we have compared twa pointers of different data types.
It is perfectly legal in C Programming.

[box]As we know Pointers can store Address of any data type, address of the data type is

“Integer” so we can compare address of any two pointers although they are of different data

types. [/box]

Following operations on pointers ;

= Greater Than

Less Than

Greater Than And Equal To

Less Than And Equal To

Equals

Mot Equal

Divide and Multiply Operations :
#include<stdio h>

Scanned with CamScanner

int meainl)

int *pirl, *pirl;

pirl = {int *) 100
ptrZ = ptrl/d;

returnil);

!
Output :

s
£ File Edit Search Rum

Compile Dabug
HONNHE G, CPP

inl maind)
irel =plrl, =plr?:

M loiri = {int -}1000-
plre = pleldss

returnid};
1

g ;14
[— Y g

Bl -Frror HOHAHEDDR . CPP & Tllegal use of painter

[F1 Help %pace Wiew source = Edit sowrce FLB Heno

Pointer Lo pointer
*ointer to Pointer in C Programming
Declaration : Double Pointer

int **pirapir;

Comsider the Following Example :
int num =45 , *ptr , **pir2pir ;
pir = #

puptr — &ptr;

What 15 Poanter to Pointer ?

Scanned with CamScanner

Double (%] 15 used to denote the double Poinler

Poinier Stores the address ol the Vanahle

Double Pointer Stores the addreess of the Pointer Variable

=

ptr ptréptr

45 3000 4000

3000 4000 5000

T cdleamn.blogspot.com

Stulement What will be the Output 7

*pir 45

**prrptr 45

pir &n

pLrplr &epir

MNotes :

Conceplually we can have Triple, n poinlers
Example : *****n,****h can be another example
Live Example :

#Hinclude<stdio.h>

int main()

{

int num = 45 , *pir , **pir2pir ;
pir = #

puZptr — &ptr;

printf(" %" **pir2pir);

Scanned with CamScanner

Scanned with CamScanner

