
CONCEPT OF PROGRAMMING USING C

Unit 3
TOPIC :​CONTROL STRUCTURES

By
 Navneet kumar solanki

 Lecturer-IT

CONTENTS:-

1.INTRODUCTION
2.DECISION MAKING WITH IF STATEMENT
3. IF ELSE AND NESTED IF
4.LADDER IF ELSE
5. LOOP: WHILE,DO-WHILE,FOR,BREAK,CONTINUE,GOTO AND
 SWITCH STATEMENTS

INTRODUCTION:-

A ​control structure​ is like a block of programming that analyses variables and chooses
a direction in which to go based on given parameters. The term flow ​control​ details the
direction the program takes (which way program ​control​ "flows"). Hence it is the basic
decision-making process in computing; It is a prediction.

The three basic types of control structures are sequential, selection and iteration.​ They can

be combined in any way to solve a specified problem.

Sequential is the default control structure, statements are executed line by line in the order in

which they appear. The selection structure is used to test a condition. A sequence of statements is

executed depending on whether or not the condition it true or false. This means the program

chooses between two or more alternative paths. Condition refers to any expression or value that

returns a Boolean value, meaning true or false.

The three main types of selection statements are "if," "if/else" and "switch" statements. The most

basic and common is the "if" statement. The "if" and "if/else" statements can be nested. Switch

statements are ideally used when there are multiple cases to choose from.

The iteration or repetition structure repeatedly executes a series of statements as long as the

condition is true. The condition may be predefined or open-ended. "While," "do/while" and "for"

loop are the three types of iteration statements. A loop can either be event controlled or counter

controlled. An event-controlled loop executes a sequence of statements till and event occurs

while a counter-controlled loop executes the statements a predetermined number of times.

DECISION MAKING WITH IF
STATEMENT
What is a Conditional Statement?

In a 'C' program are executed sequentially. This happens when there is no
condition around the statements. If you put some condition for a block of
statements the flow of execution might change based on the result evaluated
by the condition. This process is referred to as decision making in 'C.' The
decision-making statements are also called as control statements.

In 'C' programming conditional statements are possible with the help of the
following two constructs:

1. If statement

2. If-else statement

It is also called as branching as a program decides which statement to
execute based on the result of the evaluated condition.

● What is a Conditional Statement?
● If statement
● Relational Operators
● The If-Else statement
● Conditional Expressions
● Nested If-else Statements
● Nested Else-if statements

If statement
It is one of the powerful conditional statement. If statement is responsible for
modifying the flow of execution of a program. If statement is always used with
a condition. The condition is evaluated first before executing any statement
inside the body of If. The syntax for if statement is as follows:

if (condition)

 instruction;

The condition evaluates to either true or false. True is always a non-zero
value, and false is a value that contains zero. Instructions can be a single
instruction or a code block enclosed by curly braces { }.

Following program illustrates the use of if construct in 'C' programming:

#include<stdio.h>

int main()

{

int num1=1;

int num2=2;

if(num1<num2) //test-condition

https://www.guru99.com/c-if-else-statement.html#1
https://www.guru99.com/c-if-else-statement.html#2
https://www.guru99.com/c-if-else-statement.html#3
https://www.guru99.com/c-if-else-statement.html#4
https://www.guru99.com/c-if-else-statement.html#5
https://www.guru99.com/c-if-else-statement.html#6
https://www.guru99.com/c-if-else-statement.html#7

{

printf("num1 is smaller than num2");

}

return 0;

}

Output:

num1 is smaller than num2

The If-Else statement

The if-else is statement is an extended version of If. The general form of
if-else is as follows:

if (test-expression)

{

 True block of statements

}

Else

{

 False block of statements

}

Statements;

In this type of a construct, if the value of test-expression is true, then the true
block of statements will be executed. If the value of test-expression if false,
then the false block of statements will be executed. In any case, after the
execution, the control will be automatically transferred to the statements
appearing outside the block of If.

Following programs illustrate the use of the if-else construct:

We will initialize a variable with some value and write a program to determine
if the value is less than ten or greater than ten.

Let's start.

#include<stdio.h>

int main()

{

int num=19;

if(num<10)

{

printf("The value is less than 10");

}

else

{

printf("The value is greater than 10");

}

return 0;

}

Output:

The value is greater than 10

1. We have initialized a variable with value 19. We have to find out
whether the number is bigger or smaller than 10 using a 'C' program. To
do this, we have used the if-else construct.

2. Here we have provided a condition num<10 because we have to
compare our value with 10.

3. As you can see the first block is always a true block which means, if the
value of test-expression is true then the first block which is If, will be
executed.

4. The second block is an else block. This block contains the statements
which will be executed if the value of the test-expression becomes false.
In our program, the value of num is greater than ten hence the
test-condition becomes false and else block is executed. Thus, our
output will be from an else block which is "The value is greater than 10".
After the if-else, the program will terminate with a successful result.

Nested If-else Statements

When a series of decision is required, nested if-else is used. Nesting means
using one if-else construct within another one.

Let's write a program to illustrate the use of nested if-else.

#include<stdio.h>

int main()

{

int num=1;

if(num<10)

{

if(num==1)

{

printf("The value is:%d\n",num);

}

else

{

printf("The value is greater than 1");

}

}

else

{

printf("The value is greater than 10");

}

return 0;

}

Output:

The value is:1

The above program checks if a number is less or greater than 10 and prints
the result using nested if-else construct.

1. Firstly, we have declared a variable num with value as 1. Then we have
used if-else construct.

2. In the outer if-else, the condition provided checks if a number is less
than 10. If the condition is true then and only then it will execute the
inner loop. In this case, the condition is true hence the inner block is
processed.

3. In the inner block, we again have a condition that checks if our variable
contains the value 1 or not. When a condition is true, then it will process
the If block otherwise it will process an else block. In this case, the
condition is true hence the If a block is executed and the value is printed
on the output screen.

4. The above program will print the value of a variable and exit with
success.

Nested Else-if statements(LADDER IF

ELSE)
Nested else-if is used when multipath decisions are required.

The general syntax of how else-if ladders are constructed in 'C' programming
is as follows:

if (test - expression 1) {

 statement1;

} else if (test - expression 2) {

 Statement2;

} else if (test - expression 3) {

 Statement3;

} else if (test - expression n) {

 Statement n;

} else {

 default;

}

Statement x;

This type of structure is known as the else-if ladder. This chain generally looks
like a ladder hence it is also called as an else-if ladder. The test-expressions
are evaluated from top to bottom. Whenever a true test-expression if found,
statement associated with it is executed. When all the n test-expressions
becomes false, then the default else statement is executed.

Let us see the actual working with the help of a program.

#include<stdio.h>

int main()

{

int marks=83;

if(marks>75){

printf("First class");

}

else if(marks>65){

printf("Second class");

}

else if(marks>55){

printf("Third class");

}

else{

printf("Fourth class");

}

return 0;

}

Output:

First class

The above program prints the grade as per the marks scored in a test. We
have used the else-if ladder construct in the above program.

1. We have initialized a variable with marks. In the else-if ladder structure,
we have provided various conditions.

2. The value from the variable marks will be compared with the first
condition since it is true the statement associated with it will be printed
on the output screen.

3. If the first test condition turns out false, then it is compared with the
second condition.

4. This process will go on until the all expression is evaluated otherwise
control will go out of the else-if ladder, and default statement will be
printed.

LOOPS

What are Loops?
In looping, a program executes the sequence of statements many times until
the stated condition becomes false. A loop consists of two parts, a body of a
loop and a control statement. The control statement is a combination of some
conditions that direct the body of the loop to execute until the specified
condition becomes false.

● W​hat are Loops?
● Types of Loops
● While Loop
● Do-While loop
● For loop
● Break Statement
● Continue Statement
● Which loop to Select?

Types of Loops
Depending upon the position of a control statement in a program, a loop is
classified into two types:

1. Entry controlled loop

2. Exit controlled loop

In an ​entry controlled loop,​ a condition is checked before executing the body
of a loop. It is also called as a pre-checking loop.

https://www.guru99.com/c-loop-statement.html#1
https://www.guru99.com/c-loop-statement.html#2
https://www.guru99.com/c-loop-statement.html#3
https://www.guru99.com/c-loop-statement.html#4
https://www.guru99.com/c-loop-statement.html#5
https://www.guru99.com/c-loop-statement.html#6
https://www.guru99.com/c-loop-statement.html#7
https://www.guru99.com/c-loop-statement.html#8

In an ​exit controlled loop​, a condition is checked after executing the body of
a loop. It is also called as a post-checking loop.

Sample Loop

The control conditions must be well defined and specified otherwise the loop
will execute an infinite number of times. The loop that does not stop executing
and processes the statements number of times is called as an ​infinite loop​.
An infinite loop is also called as an "​Endless loop​." Following are some
characteristics of an infinite loop:

1. No termination condition is specified.

2. The specified conditions never meet.

The specified condition determines whether to execute the loop body or not.

'C' programming language provides us with three types of loop constructs:

1. The while loop

2. The do-while loop

3. The for ​loOP

WHILE​ Loop
A while loop is the most straightforward looping structure. The basic format of
while loop is as follows:

while (condition) {

 statements;

}

It is an entry-controlled loop. In while loop, a condition is evaluated before
processing a body of the loop. If a condition is true then and only then the
body of a loop is executed. After the body of a loop is executed then control
again goes back at the beginning, and the condition is checked if it is true, the
same process is executed until the condition becomes false. Once the
condition becomes false, the control goes out of the loop.

After exiting the loop, the control goes to the statements which are
immediately after the loop. The body of a loop can contain more than one
statement. If it contains only one statement, then the curly braces are not
compulsory. It is a good practice though to use the curly braces even we have
a single statement in the body.

In while loop, if the condition is not true, then the body of a loop will not be
executed, not even once. It is different in do while loop which we will see
shortly.

Following program illustrates a while loop:

#include<stdio.h>

#include<conio.h>

int main()

{

int num=1; //initializing the variable

while(num<=10) //while loop with condition

{

printf("%d\n",num);

num++; //incrementing operation

}

return 0;

}

Output:

1

2

3

4

5

6

7

8

9

10

The above program illustrates the use of while loop. In the above program, we
have printed series of numbers from 1 to 10 using a while loop.

1. We have initialized a variable called num with value 1. We are going to
print from 1 to 10 hence the variable is initialized with value 1. If you
want to print from 0, then assign the value 0 during initialization.

2. In a while loop, we have provided a condition (num<=10), which means
the loop will execute the body until the value of num becomes 10. After
that, the loop will be terminated, and control will fall outside the loop.

3. In the body of a loop, we have a print function to print our number and
an increment operation to increment the value per execution of a loop.

An initial value of num is 1, after the execution, it will become 2, and
during the next execution, it will become 3. This process will continue
until the value becomes 10 and then it will print the series on console
and terminate the loop.

\n is used for formatting purposes which means the value will be printed on a
new line.

Do-While loop
A do-while loop is similar to the while loop except that the condition is always
executed after the body of a loop. It is also called an exit-controlled loop.

The basic format of while loop is as follows:

do {

 statements

} while (expression);

As we saw in a while loop, the body is executed if and only if the condition is
true. In some cases, we have to execute a body of the loop at least once even
if the condition is false. This type of operation can be achieved by using a
do-while loop.

In the do-while loop, the body of a loop is always executed at least once. After
the body is executed, then it checks the condition. If the condition is true, then
it will again execute the body of a loop otherwise control is transferred out of
the loop.

Similar to the while loop, once the control goes out of the loop the statements
which are immediately after the loop is executed.

The critical difference between the while and do-while loop is that in while loop
the while is written at the beginning. In do-while loop, the while condition is
written at the end and terminates with a semi-colon (;)

The following program illustrates the working of a do-while loop:

We are going to print a table of number 2 using do while loop.

#include<stdio.h>

#include<conio.h>

int main()

{

int num=1; //initializing the variable

do //do-while loop

{

printf("%d\n",2*num);

num++; //incrementing operation

}while(num<=10);

return 0;

}

Output:

2

4

6

8

10

12

14

16

18

20

In the above example, we have printed multiplication table of 2 using a
do-while loop. Let's see how the program was able to print the series.

1. First, we have initialized a variable 'num' with value 1. Then we have
written a do-while loop.

2. In a loop, we have a print function that will print the series by multiplying
the value of num with 2.

3. After each increment, the value of num will increase by 1, and it will be
printed on the screen.

4. Initially, the value of num is 1. In a body of a loop, the print function will
be executed in this way: 2*num where num=1, then 2*1=2 hence the
value two will be printed. This will go on until the value of num becomes
10. After that loop will be terminated and a statement which is
immediately after the loop will be executed. In this case return 0.

For loop
A for loop is a more efficient loop structure in 'C' programming. The general
structure of for loop is as follows:

for (initial value; condition; incrementation or

decrementation)

{

 statements;

}

● The initial value of the for loop is performed only once.
● The condition is a Boolean expression that tests and compares the

counter to a fixed value after each iteration, stopping the for loop when
false is returned.

● The incrementation/decrementation increases (or decreases) the
counter by a set value.

Following program illustrates the use of a simple for loop:

#include<stdio.h>

int main()

{

int number;

for(number=1;number<=10;number++) //for loop to

print 1-10 numbers

{

printf("%d\n",number); //to print the number

}

return 0;

}

Output:

1

2

3

4

5

6

7

8

9

10

The above program prints the number series from 1-10 using for loop.

1. We have declared a variable of an int data type to store values.
2. In for loop, in the initialization part, we have assigned value 1 to the

variable number. In the condition part, we have specified our condition
and then the increment part.

3. In the body of a loop, we have a print function to print the numbers on a
new line in the console. We have the value one stored in number, after
the first iteration the value will be incremented, and it will become 2.
Now the variable number has the value 2. The condition will be
rechecked and since the condition is true loop will be executed, and it
will print two on the screen. This loop will keep on executing until the

value of the variable becomes 10. After that, the loop will be terminated,
and a series of 1-10 will be printed on the screen.

In C, the for loop can have multiple expressions separated by commas in
each part.

For example:

for (x = 0, y = num; x < y; i++, y--) {

 statements;

}

Also, we can skip the initial value expression, condition and/or increment by
adding a semicolon.

For example:

int i=0;

int max = 10;

for (; i < max; i++) {

 printf("%d\n", i);

}

Notice that loops can also be nested where there is an outer loop and an inner
loop. For each iteration of the outer loop, the inner loop repeats its entire
cycle.

Consider the following example, that uses nested for loops output a
multiplication table:

#include <stdio.h>

int main() {

int i, j;

int table = 2;

int max = 5;

for (i = 1; i <= table; i++) { // outer loop

 for (j = 0; j <= max; j++) { // inner loop

 printf("%d x %d = %d\n", i, j, i*j);

 }

 printf("\n"); /* blank line between tables */

}}

Output:

1 x 0 = 0

1 x 1 = 1

1 x 2 = 2

1 x 3 = 3

1 x 4 = 4

1 x 5 = 5

2 x 0 = 0

2 x 1 = 2

2 x 2 = 4

2 x 3 = 6

2 x 4 = 8

2 x 5 = 10

The nesting of for loops can be done up-to any level. The nested loops should
be adequately indented to make code readable. In some versions of 'C,' the
nesting is limited up to 15 loops, but some provide more.

The nested loops are mostly used in array applications which we will see in
further tutorials.

Break Statement
The break statement is used mainly in in the switch statement. It is also useful
for immediately stopping a loop.

We consider the following program which introduces a break to exit a while
loop:

#include <stdio.h>

int main() {

int num = 5;

while (num > 0) {

 if (num == 3)

 break;

 printf("%d\n", num);

 num--;

}}

Output:

5

4

Continue Statement
When you want to skip to the next iteration but remain in the loop, you should
use the continue statement.

For example:

#include <stdio.h>

int main() {

int nb = 7;

while (nb > 0) {

 nb--;

 if (nb == 5)

 continue;

 printf("%d\n", nb);

}}

Output:

6

4

3

2

1

So, the value 5 is skipped.

Which loop to Select?
Selection of a loop is always a tough task for a programmer, to select a loop
do the following steps:

● Analyze the problem and check whether it requires a pre-test or a
post-test loop.

● If pre-test is required, use a while or for a loop.
● If post-test is required, use a do-while loop.

Summary

● Looping is one of the key concepts on any programming language.
● It executes a block of statements number of times until the condition

becomes false.
● Loops are of 2 types: entry-controlled and exit-controlled.
● 'C' programming provides us 1) while 2) do-while and 3) for loop.
● For and while loop is entry-controlled loops.
● Do-while is an exit-controlled loop.

Switch Case Statement in C Programming
with Example

What is a Switch Statement?
A switch statement tests the value of a variable and compares it with multiple
cases. Once the case match is found, a block of statements associated with
that particular case is executed.

Each case in a block of a switch has a different name/number which is
referred to as an identifier. The value provided by the user is compared with
all the cases inside the switch block until the match is found.

If a case match is found, then the default statement is executed, and the
control goes out of the switch block.

In this tutorial, you will learn-

● What is a Switch Statement?
● Syntax
● Flow Chart Diagram of Switch Case
● Example
● Nested Switch
● Why do we need a Switch case?
● Rules for switch statement:

Syntax
A general syntax of how switch-case is implemented in a 'C' program is as
follows:

switch(expression)

{

case value-1:

Block-1;

Break;

case value-2:

Block-2;

https://www.guru99.com/c-switch-case-statement.html#1
https://www.guru99.com/c-switch-case-statement.html#2
https://www.guru99.com/c-switch-case-statement.html#3
https://www.guru99.com/c-switch-case-statement.html#4
https://www.guru99.com/c-switch-case-statement.html#5
https://www.guru99.com/c-switch-case-statement.html#6
https://www.guru99.com/c-switch-case-statement.html#7

Break;

case value-n:

Block-n;

Break;

default:

Block-1;

Break;

}

Statement-x;

● The expression can be integer expression or a character expression.
● Value-1, 2, n are case labels which are used to identify each case

individually. Remember that case labels should not be same as it may
create a problem while executing a program. Suppose we have two
cases with the same label as '1'. Then while executing the program, the
case that appears first will be executed even though you want the
program to execute a second case. This creates problems in the
program and does not provide the desired output.

● Case labels always end with a colon (:). Each of these cases is
associated with a block.

● A block is nothing but multiple statements which are grouped for a
particular case.

● Whenever the switch is executed, the value of test-expression is
compared with all the cases which we have defined inside the switch.
Suppose the test expression contains value 4. This value is compared
with all the cases until case whose label four is found in the program. As

soon as a case is found the block of statements associated with that
particular case is executed and control goes out of the switch.

● The break keyword in each case indicates the end of a particular case.
If we do not put the break in each case then even though the specific
case is executed, the switch will continue to execute all the cases until
the end is reached. This should not happen; hence we always have to
put break keyword in each case. Break will terminate the case once it is
executed and the control will fall out of the switch.

● The default case is an optional one. Whenever the value of
test-expression is not matched with any of the cases inside the switch,
then the default will be executed. Otherwise, it is not necessary to write
default in the switch.

● Once the switch is executed the control will go to the statement-x, and
the execution of a program will continue.

Flow Chart Diagram of Switch Case
Following diagram illustrates how a case is selected in switch case:

How Switch Works

Example
Following program illustrates the use of switch:

#include <stdio.h>

 int main() {

 int num = 8;

 switch (num) {

 case 7:

 printf("Value is 7");

 break;

 case 8:

 printf("Value is 8");

 break;

 case 9:

 printf("Value is 9");

 break;

 default:

 printf("Out of range");

 break;

 }

 return 0;

 }

Output:

Value is 8

1. In the given program we have initialized a variable num with value 8.
2. A switch construct is used to compare the value stored in variable num

and execute the block of statements associated with the matched case.
3. In this program, since the value stored in variable num is eight, a switch

will execute the case whose case-label is 8. After executing the case,
the control will fall out of the switch and program will be terminated with
the successful result by printing the value on the output screen.

Try changing the value of variable num and notice the change in the output.

For example, we consider the following program which defaults:

#include <stdio.h>

int main() {

int language = 10;

 switch (language) {

 case 1:

 printf("C#\n");

 break;

 case 2:

 printf("C\n");

 break;

 case 3:

 printf("C++\n");

 break;

 default:

 printf("Other programming language\n");}}

Output:

Other programming language

When working with switch case in C, you group multiple cases with unique
labels. You need to introduce a break statement in each case to branch at the
end of a switch statement.

The optional default case runs when no other matches are made.

We consider the following switch statement:

#include <stdio.h>

int main() {

int number=5;

switch (number) {

 case 1:

 case 2:

 case 3:

 printf("One, Two, or Three.\n");

 break;

 case 4:

 case 5:

 case 6:

 printf("Four, Five, or Six.\n");

 break;

 default:

 printf("Greater than Six.\n");}}

Output:

Four, Five, or Six.

GO TO STATEMENT IN C
The ​goto​ statement allows us to transfer control of the program to the

specified ​label​.

Syntax of goto Statement

goto​ label;
...

...

label:

statement;

The ​label​ is an identifier. When the ​goto​ statement is encountered, the control

of the program jumps to ​label:​ and starts executing the code.

Example: goto Statement

// Program to calculate the sum and average of positive numbers

// If the user enters a negative number, the sum and average are

displayed.

include <stdio.h>

int​ main()
{

 ​const​ ​int​ maxInput = ​5​;
 ​int​ i;
 ​double​ number, average, sum=​0.0​;

 ​for​(i=​1​; i<=maxInput; ++i)
 {

 printf(​"%d. Enter a number: "​, i);
 scanf(​"%lf"​,&number);

 ​if​(number < ​0.0​)
 ​goto​ jump;

 sum += number;

 }

 jump:

 average=sum/(i-​1​);
 printf(​"Sum = %.2f\n"​, sum);
 printf(​"Average = %.2f"​, average);

 ​return​ ​0​;
}

Output

1. Enter a number: 3

2. Enter a number: 4.3

3. Enter a number: 9.3

4. Enter a number: -2.9

Sum = 16.60

Reasons to avoid goto

The use of ​goto​ statement may lead to code that is buggy and hard to follow.

For example,

one:

for​ (i = ​0​; i < number; ++i)
{

 test += i;

 ​goto​ two;
}

two:

if​ (test > ​5​) {
 ​goto​ three;
}

...

Also, the ​goto​ statement allows you to do bad stuff such as jump out of the

scope.

That being said, ​goto​ can be useful sometimes. For example: to break from

nested loops.

Should you use goto?

If you think the use of ​goto​ statement simplifies your program, you can use it.

That being said, ​goto​ is rarely useful and you can create any C program

without using ​goto​ altogether.

